Tutorial
5 min read

Running Machine Learning Pipelines with Kedro, Kubeflow and Airflow

One of the biggest challenges of today’s Machine Learning world is the lack of standardization when it comes to models training.

We all know that data needs to be cleaned, split into training and test sets, fitted into the model and validated on the observations from the test subset. Maybe there should be some cross-validation involved, hyperparameters tuning is also not a bad idea. All Data Scientists feel how to work with the models efficiently, but a lack of common standards makes their work hard to understand for other engineers using a different methodology.

To overcome this issue, QuantumBlack open-sourced the Kedro framework, an open-source Python framework for creating reproducible, maintainable and modular data science code. Projects created with Kedro are universal enough to cover most of the tasks that Data Scientists may have. Additionally, Data Catalog and Pipeline abstractions make the model building process look like a software project that can be configured and deployed easily, especially by the engineers that didn’t take part in implementing them. It provides a variety of plugins to log models and metrics in Mlflow, ship the project as a docker image and more. Based on the feedback gathered from our clients, we made Kedro a core part of GetInData Machine Learning Operations Platform. We presented our MLOps platform blueprint during the Google Cloud Region launch in Warsaw. You can watch it here (currently only in Polish)

However, having a Kedro project ready and well tested on the data sample doesn’t mean it is ready enough to go “into production” and be deployed quickly. Continuous training, hyper parameter tuning, continuous quality validation - all these tasks need some scheduling capabilities, distributed computing and powerful hardware to do things efficiently. Kedro describes some ideas on how to deploy the models, but well, you know what they say, “work smarter, not harder - automate everything” ;-)

*Welcome to MLOps candy shop and choose your flavour! - Mateusz Pytel & Mariusz Strzelecki - Big Data Technology Warsaw Summit 2021*

Using Kubeflow? Meet kedro-kubeflow

Kubernetes is the core of our Machine Learning Operations platform and Kubeflow is a system that we often deploy for our clients. Therefore, we decided to automate the generation of the Kubeflow pipeline from the existing Kedro pipeline to allow it to be scheduled by Kubeflow Pipelines (a.k.a. KFP) and started on the Kubernetes cluster. Thankfully, the creators of Kedro gave us a little help, by doing proof-of-concept of this integration and providing interesting insights.

The result of our work is available on GitHub as a kedro-kubeflow plugin. You install it in your existing Kedro project and soon you can:

  • compile Kedro nodes as KFP steps and reflect dependencies,
  • upload the compiled KFP pipeline to the server,
  • trigger the execution using CLI or enable a schedule when you’re finally happy with how the pipeline works,
  • connect seamlessly with MLflow and log all the steps under one Mlflow run (even if they are actually separate processes),
  • access Google AI Platform Pipelines API using IAM Proxy,
  • and more!

We faced some challenges - for example Kedro expects the `data/` directory to be a place where nodes exchange the data, but in a distributed environment there are limited options to maintain shared storage between different processes. Thankfully, with a bit of hacking, we made it! 

getindata-machine-learning-operations-platform-kubeflow-plugin-mlops GetInData MLOps Platform: Kubeflow plugin

Using Airflow? Meet kedro-airflow-k8s

Some of our customers tend to avoid Kubeflow, as the system is quite complicated to install and maintain. Fortunately, Airflow can meet the same needs with Kedro pipeline deployment. There is an official kedro-airflow plugin, but it doesn’t support running in Docker containers inside a Kubernetes cluster which is our preferred, most universal method.

Therefore, based on the experience of developing kedro-kubeflow, we created another plugin that we called kedro-airflow-k8s. It has the same capabilities and even the same CLI syntax as its older brother, but compiles the Kedro pipelines to Airflow DAG and deploys it by copying the file to the shared bucket which Airflow uses to synchronize Dag Bag.

machine-learning-pipelines-kedro-airflow-plugin
Machine Learning pipelines: kedro-airflow plugin

Try the plugins and let us know your thoughts!

If you’re using Kubeflow, feel free to check quickstart and the rest of the documentation. If you’re using Airflow, we have quickstart as well. If you decide to give them a try - we’re waiting for your feedback! The plugins are in Beta phase, but the main API (the way you call it from Kedro CLI) is now stable, so don’t be afraid to integrate it into your CI/CD pipelines, as we did recently.

If you want to know more please check our Machine Learning Platform and do not hesitate to contact us.

big data
technology
kubernetes
machine learning
Airflow
28 April 2021

Want more? Check our articles

włdek blogobszar roboczy 1 4x 100
Tutorial

Artificial Intelligence regulatory initiatives of EU countries

AI regulatory initiatives of EU countries On April 21, 2021, the EU Commission adopted a proposal for a regulation on artificial intelligence…

Read more
blog7

5 main data-related trends to be covered at Big Data Tech Warsaw 2021 Part II

Trend 4. Larger clouds over the Big Data landscape  A decade ago,  only a few companies ran their Big Data infrastructure and pipelines in the public…

Read more
getindata integartion tests spark applications
Use-cases/Project

Integration tests of Spark applications

You just finished the Apache Spark-based application. You ran so many times, you just know the app works exactly as expected: it loads the input…

Read more
getindata nifi ingestion universe made out flow files nifi architecture big data
Tutorial

NiFi Ingestion Blog Series. PART IV - Universe made out of flow files - NiFi architecture

Apache NiFi, a big data processing engine with graphical WebUI, was created to give non-programmers the ability to swiftly and codelessly create data…

Read more
lean big data 1
Tutorial

Lean Big Data - How to avoid wasting money with Big Data technologies and get some ROI

During my 6-year Hadoop adventure, I had an opportunity to work with Big Data technologies at several companies ranging from fast-growing startups (e…

Read more
transfer legacy pipeline modern gitlab cicd kubernetes kaniko
Tutorial

How we helped our client to transfer legacy pipeline to modern one using GitLab's CI/CD - Part 2

Please dive in the second part of a blog series based on a project delivered for one of our clients. If you miss the first part, please check it here…

Read more

Contact us

Interested in our solutions?
Contact us!

Together, we will select the best Big Data solutions for your organization and build a project that will have a real impact on your organization.

The administrator of your personal data is GetInData Sp. z o.o. Sp.k with its registered seat in Warsaw (02-508), 39/20 Pulawska St. Your data is processed for the purpose of provision of electronic services in accordance with the  Terms & Conditions. For more information on personal data processing and your rights please see  Privacy Policy.

By submitting this form, you agree to our Terms & Conditions and Privacy Policy